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Introduction

1. Factored forms of numerical operators are used extensively in

constructing and applying numerical methods to problems in

uid mechanics.

2. Concepts such as:\hybrid",\time split", and \fractional step"

methods.

3. Especially useful for the derivation of practical algorithms that

use implicit methods.
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Concepts

1. Concept 1: Matrices can be split in quite arbitrary ways.

2. Concept 2: Advancing to the next time level always requires

some reference to a previous one.

3. Concept 3: Time marching methods are valid only to some order

of accuracy in the step size, h.
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Splitting

1. Starting with:

d~u

dt
= A~u� ~f (1)

2. Consider arbitrary splitting of A, Concept 1:

d~u

dt
= [A1 +A2]~u�

~f (2)

where A = [A1 +A2], but A1 and A2 are not unique.
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1
st order Explicit Splitting

1. Choose the simple, �rst-order,a explicit Euler method.

2. New data ~un+1 in terms of old ~un Concept 2:

~un+1 = [ I + hA1 + hA2]~un � h~f +O(h2) (3)

3. Equivalently:

~un+1 =
�
[ I + hA1][ I + hA2]� h2A1A2

�
~un � h~f +O(h2)

aSecond-order time-marching methods are considered later.
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4. Finally, from Concept 3: (allowing us to drop higher order

terms):

~un+1 = [ I + hA1][ I + hA2]~un � h~f +O(h2) (4)

5. Eqs. 3 and 4 have the same formal order of accuracy

6. Neither one is to be preferred over the other.

7. However, their numerical stability can be quite di�erent

8. Also, techniques to carry out their numerical evaluation can have

arithmetic operation counts that vary by orders of magnitude.
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Factoring Physical Representations: Time Splitting

1. PDE representing: convection Ac and dissipation Ad .

d~u

dt
= Ac

~u+Ad
~u+ ~(bc) (5)

2. Euler Explicit

~un+1 = [ I + hAd + hAc]~un + h ~(bc) +O(h2) (6)

3. Factoring the dissipation term and the convection term produces

a two step process

4. Results in additional error and possible stability consequences.
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5. Factored form

~un+1 = [ I + hAd]
�
[ I + hAc]~un + h ~(bc)

�
= [ I + hAd + hAc]~un + h ~(bc)| {z }

Original Unfactored Terms

+ h2Ad

�
Ac
~un + ~(bc)

�
| {z }
Higher-Order Terms

+O(h2) (7)

6. Eq. 7 and the original unfactored form Eq. 6 have identical

orders of accuracy in the time approximation.

7. Apply a predictor-corrector sequence.

~un+1 = [ I + hAc]~un + h ~(bc)

~un+1 = [ I + hAd]~un+1 (8)
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Implicit-Explicit Factoring

1. Split combinations of implicit and explicit techniques.

2. Apply a partially implicit-explicit method to Eq. 5

~un+1 = [ I + hAc]~un + hAd
~un+1 + h ~(bc) +O(h2) (9)

3. Rewrite as:

~un+1 = [ I � hAd]
�1
�
[ I + hAc]~un + h ~(bc)

�
= [ I + hAd + hAc]~un + h ~(bc)| {z }

Original Unfactored Terms

+O(h2) (10)

4. Using

[ I � hAd]
�1

= I + hAd + h2A2
d + � � �

if h � jjAdjj < 1, where jjAdjj is some norm of [Ad].
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5. A predictor-corrector interpretation leads to the sequence

~un+1 = [ I + hAc]~un + h ~(bc)

[ I � hAd]~un+1 = ~un+1 (11)

6. The di�usion operator is now implicit, requiring a tridiagonal

solver if the di�usion term is central di�erenced.

7. Numerical sti�ness is generally much more severe for the

di�usion process, this factored form would appear to be superior

to that provided by Eq. 8. But, Stability?
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Factoring Space Matrix Operators in 2{D

1. Physical systems are inherently multidimensional

2. Three-Dimensional (3D) Wave equation

@u

@t
+ a

@u

@x
+ b

@u

@y
+ c

@u

@z
= 0

3. Two-Dimensional (2D) Di�usion equation

@u

@t
=
@2u

@x2
+
@2u

@y2

4. Navier-Stokes equations

@Q

@t
+
@E

@x
+
@F

@y
= 0
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Mesh Indexing Convention

1. Linear 2-D scalar PDE that models di�usion:

@u

@t
=

@2u

@x2
+
@2u

@y2
(12)

2. Reduce PDE to a coupled set of ODE's by di�erencing the space

derivatives on a mesh (graph, net).

3. Inspecting the resulting matrix operator.
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Mesh Indexing

1. Assume a 3� 4 point mesha

� � � �

My � 13 23 33 43 �

k � 12 22 32 42 �

1 � 11 21 31 41 �

� � � �

1 j � � � Mx

Mesh indexing in 2-D.

(13)

aThis could also be called a 5� 6 point mesh if the boundary points (labeled �

in the sketch) were included,here we just consider interior points.

13



2. Mx = 4, the number of (interior) x points

3. My = 3, the number of (interior) y points

4. The numbers 11 ; 12 ; � � � ; 43 represent the location in the mesh

of the dependent variable bearing that index.

5. Thus u32 represents the value of u at j = 3 and k = 2.

6. NOTE: This notation assume we order the points with the j or x

index �rst and the k or y index second.
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Data-Bases and Space Vectors

1. DATA-BASE: dimensioned array in a computer code that allots

the storage locations of the dependent variable(s)

2. Many ways to lay out a data-base.

3. Consider only two:

(a) (x)-vectors: consecutively along rows that are themselves

consecutive from k = 1 to My

(b) (y)-vectors: Consecutively along columns that are consecutive

from j = 1 to Mx.

4. Refer to each row or column group as a space vector (they

represent data along lines that are continuous in space)

5. Label their sum with the symbol U .
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6. To be speci�c about the structure

(a) Label a data-base composed of x-vectors with U (x)

(b) Example:

U (x) = (u11; u21; u31; u41; u12; u22; u32; u42; u13; u23; u33; u43)
T

(c) Label a data-base composed of y-vectors with U (y).

(d) Example:

U (y) = (u11; u12; u13; u21; u22; u23; u31; u32; u33; u41; u42; u43)
T
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Data-Base Permutations

1. Two vectors (arrays) are related by a permutation matrix P :

U (x) = PxyU
(y) and U (y) = PyxU

(x) with Pyx = PT
xy = P�1xy (14)

2. Consider the structure of a matrix �nite-di�erence operator

representing 3-point central-di�erencing schemes for both space

derivatives in two dimensions.

3. When the matrix is multiplying a space vector U , the usual (but

ambiguous) representation is given by Ax+y.

dU

dt
= Ax+yU + ~(bc) (15)

4. If it is important to be speci�c about the data-base structure, we

use the notation A
(x)
x+y or A

(y)
x+y, depending on the data-base

chosen for the U it multiplies.
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Example for U (x) Ordering

1. Data-base composed of My x{vectors stored in U (x).

2. Entries for x! x, for y ! o, for both ! �.

A
(x)

x+y
� U

(x)
=

2
66666666664

� x j o j

x � x j o j

x � x j o j

x � j o j

o j � x j o

o j x � x j o

o j x � x j o

o j x � j o

j o j � x

j o j x � x

j o j x � x

j o j x �

3
77777777775

�

11

21

31

41

� �

12

22

32

42

� �

13

23

33

43

(16)
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Example for U (y) Ordering

1. Data-base composed of Mx y{vectors stored in U (y).

2. Entries for x! x, for y ! o, for both ! �.

A
(y)

x+y
� U

(y)
=

2
666666666664

� o j x j j

o � o j x j j

o � j x j j

x j � o j x j

x j o � o j x j

x j o � j x j

j x j � o j x

j x j o � o j x

j x j o � j x

j j x j � o

j j x j o � o

j j x j o �

3
777777777775

�

11

12

13

� �

21

22

23

� �

31

32

33

� �

41

42

43

(17)
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Permutation Discussion

1. Notice that the matrices are not the same although they

represent the same derivative operation.

2. Their structures are similar, however, and they are related by the

same permutation matrix that relates U (x) to U (y).

A
(x)
x+y = Pxy �A

(y)
x+y � Pyx (18)
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Space Splitting and Factoring: (x) Ordering

1. The matrix A
(x)
x+y can be split into two matrices such that

A
(x)
x+y = A(x)

x +A(x)
y (19)

A
(x)
x � U

(x)
=

2
66666666664

x x j j

x x x j j

x x x j j

x x j j

j x x j

j x x x j

j x x x j

j x x j

j j x x

j j x x x

j j x x x

j j x x

3
77777777775

� U
(x)

(20)
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A
(x)
y � U

(x)
=

2
66666666664

o j o j

o j o j

o j o j

o j o j

o j o j o

o j o j o

o j o j o

o j o j o

j o j o

j o j o

j o j o

j o j o

3
77777777775

� U
(x)

(21)
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Space Splitting and Factoring: (y) Ordering

1. Similarly

A
(y)
x+y = A(y)

x +A(y)
y (22)

A
(y)
x � U

(y)
=

2
666666666664

x j x j j

x j x j j

x j x j j

x j x j x j

x j x j x j

x j x j x j

j x j x j x

j x j x j x

j x j x j x

j j x j x

j j x j x

j j x j x

3
777777777775

� U
(y)

(23)
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A
(y)
y � U

(y)
=

2
666666666664

o o j j j

o o o j j j

o o j j j

j o o j j

j o o o j j

j o o j j

j j o o j

j j o o o j

j j o o j

j j j o o

j j j o o o

j j j o o

3
777777777775

� U
(y)

(24)
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Matrix Relations: Permutations

1. The permutation relation also holds for the split matrices, so

A(x)
y = PxyA

(y)
y Pyx

and

A(x)
x = PxyA

(y)
x Pyx

2. The splittings can be combined with factoring
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Example

1. First-order in time:implicit Euler method

U
(x)

n+1
= U

(x)
n + h

�
A
(x)
x + A

(x)
y

�
U
(x)

n+1
+ h ~(bc)

�
I � hA

(x)
x � hA

(x)
y

�
U
(x)

n+1
= U

(x)
n + h ~(bc) + O(h

2
) (25)

2. Retain �rst-order accuracy with the alternative�
I � hA

(x)
x

��
I � hA

(x)
y

�
U
(x)

n+1
= U

(x)
n + h ~(bc) + O(h

2
) (26)

3. Predictor-corrector form and permute the data-base of the
second row. �

I � hA
(x)
x

�
~U
(x)

= U
(x)
n + h ~(bc)�

I � hA
(y)
y

�
U
(y)

n+1
= ~U

(y)
(27)
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Second-Order Factored Implicit Methods

1. Second-order accuracy in time can be maintained

2. Trapezoidal method where the derivative operators have been

split h
I �

1

2
hAx �

1

2
hAy

i
Un+1 = (28)h

I +
1

2
hAx +

1

2
hAy

i
Un + h ~(bc) +O(h3)

3. Factor both sides givingh h
I �

1

2
hAx

ih
I �

1

2
hAy

i
�

1

4
h
2
AxAy

i
Un+1

=
h h

I +
1

2
hAx

ih
I +

1

2
hAy

i
�

1

4
h
2
AxAy

i
Un +

h ~(bc) +O(h3) (29)
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4. Note that the combination 1
4h

2[AxAy](Un+1 � Un) is

proportional to h3: since (Un+1 � Un) is proportional to h.h
I �

1

2
hAx

ih
I �

1

2
hAy

i
Un+1 =h

I +
1

2
hAx

ih
I +

1

2
hAy

i
Un + h ~(bc) +O(h3)

5. Both the factored and unfactored form of the trapezoidal method

are second-order accurate in the time march.

6. An alternative form of this kind of factorization is the classical

ADI (alternating direction implicit) methodh
I �

1

2
hAx

i
~U =

h
I +

1

2
hAy

i
Un +

1

2
hFnh

I �
1

2
hAy

i
Un+1 =

h
I +

1

2
hAx

i
~U +

1

2
hFn+1 +O(h3)
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Importance of Factored Forms: 2D and 3D

1. Time-march equations are sti�, and implicit methods are

required to permit reasonably large time steps

2. The use of factored forms becomes a very valuable tool for

realistic problems.

3. Consider,�
I �

1

2
hAx+y

�
Un+1 =

�
I +

1

2
hAx+y

�
Un + h ~(bc)

4. Mx number of points in x, My number of points in y

5. Accumulate the right-hand-side in the array (RHS).
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6. Solving for Un+1 requires the solution of a sparse, but very large, set
of coupled simultaneous equations, e.g.,

�
I �

1

2
hAx+y

�
�Un+1 =

2
66666666664

� x j o j

x � x j o j

x � x j o j

x � j o j

o j � x j o

o j x � x j o

o j x � x j o

o j x � j o

j o j � x

j o j x � x

j o j x � x

j o j x �

3
77777777775
�Un+1 = (RHS)

7. In real cases involving the 2-D Euler or Navier-Stokes equations, each

symbol (o; x; �) represents a 4 � 4 block matrix with entries that

depend on the pressure, density and velocity �eld, (5 � 5 in 3D).

8. Suppose we were to solve the equations directly.

9. The forward sweep of a simple Gaussian elimination �lls all of the 4 �

4 blocks between the main and outermost diagonal,
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10. This must be stored in computer memory to be used to �nd the �nal

solution in the backward sweep.

11. If Ne represents the order of the small block matrix (4 in the 2-D

Euler case), the approximate memory requirement is

(Ne �My) � (Ne �My) �Mx

oating point words.

12. Here it is assumed that My < Mx. If My > Mx, My and Mx would be

interchanged.

13. A moderate mesh of 60� 200 points would require over 11 million

words to �nd the solution.

14. The next consideration is operation counts for the solution process.

15. A full matrix of rank (size) N requires O(N3) oating point

operations (FLOP)to solve the linear system.
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16. A matrix with band width ba requires O(Nb2) FLOP

17. The 2D example would then require

O((Ne �Mx �My) �Min(Ne �Mx; Ne �My)
2) FLOP

18. The 60� 200 point example would require � 109 FLOP

19. In a practical application, each iteration n requires the large sparse

linear solve with typically 103 to 104 times steps, leading to

� 1012 � 1013 FLOP per case.

20. With computing speeds of over one teraop,b direct solvers may

become useful for �nding steady-state solutions of practical problems

in two dimensions.

aBand width ,b, is de�ned as the maximum number of o� diagonals with non-

zero entries plus one for the center diagonal. For example: a tridiagonal matrix

has b = 2, a pentra-diagonal matrix b = 3
bOne trillion oating-point operations per second.
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21. However, a three-dimensional solver would require a memory of

approximately

N
2
e �M

2
y �M

2
z �Mx

words, and, for well resolved ow �elds, this probably exceeds memory

availability for some time to come.

22. Operation counts for a direct solver in 3D c are in the > 1016 range

23. On the other hand, consider computing a solution using the factored

implicit equationh
I �

1

2
hAx

ih
I �

1

2
hAy

i
Un+1 =h

I +
1

2
hAx

ih
I +

1

2
hAy

i
Un + h ~(bc)

24. Again, form the (RHS)

cA 4 million point grid: Mx = 100;My = 200;Mz = 200; Ne = 5
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25. Write the remaining terms in the two-step predictor-corrector formh
I �

1

2
hA

(x)
x

i
~U (x) = (RHS)(x)h

I �
1

2
hA

(y)
y

i
U
(y)
n+1 = ~U (y) (30)
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26. First step: solved using My uncoupled block tridiagonal solversd.

27. This is equivalent to solving My one-dimensional, 1-D problems, each
with Mx blocks of order Ne.

�
I �

1

2
hA

(x)
x

�
~U
(x)

=

2
66666666664

x x j j

x x x j j

x x x j j

x x j j

j x x j

j x x x j

j x x x j

j x x j

j j x x

j j x x x

j j x x x

j j x x

3
77777777775
� ~U

(x)
= (RHS)

(x)

28. Temporary solution ~U (x) would then be permuted to ~U (y)

dA block tridiagonal solver is similar to a scalar solver except that small block

matrix operations replace the scalar ones, and matrix multiplications do not com-

mute.
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29. Next step: solve Mx 1D implicit problems each with dimension My.

�
I �

1

2
hA

(y)
y

�
U
(y)

n+1
=

2
666666666664

y y j j j

y y y j j j

y y j j j

j y y j j

j y y y j j

j y y j j

j j y y j

j j y y y j

j j y y j

j j j y y

j j j y y y

j j j y y

3
777777777775

� U
(y)

n+1
= ~U

(y)

30. The band width for both steps is now b = 2Ne

31. An Operation count for each step is: My �Mx � 4�N2
e
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32. In the 60� 200 example the total is : � 2� 106 FLOP per time step

33. Signi�cantly less than the direct solve, � 3� 109 FLOP per time step

34. In 3D the savings are even more signi�cant.

35. For example, in the shuttle analysis: (20� 106 grid points)

(a) � 1018 FLOP per time step for direct solve

(b) � 1010 FLOP per time step for the 3 block tridiagonals solves
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The Delta Form

1. There are many ways can be devised to split the matrices and

generate factored forms.

2. An especially useful form for ensuring a correct steady-state

solution in a converged time-march: \delta form,"

3. Consider the unfactored form of the trapezoidal method�
I �

1

2
hAx �

1

2
hAy

�
Un+1 =�

I +
1

2
hAx +

1

2
hAy

�
Un + h ~(bc) +O(h3) (31)

4. From both sides subtract�
I �

1

2
hAx �

1

2
hAy

�
Un
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5. De�ne:�Un = Un+1 � Un, and rewritting�
I �

1

2
hAx �

1

2
hAy

�
�Un = h

h
Ax+yUn + ~(bc)

i
+O(h3) (32)

6. Note: the right side of this equation is the product of h and a

term that is identical to the right side of our original ODE.

7. Thus, if Eq. 32 converges, it is guaranteed to converge to the

correct steady-state solution of the ODE.

8. Factor Eq. 32 maintaining second-order accuracy�
I �

1

2
hAx

��
I �

1

2
hAy

�
�Un = h

h
Ax+yUn + ~(bc)

i
+O(h3) (33)

9. This is the delta form of a factored, second-order, 2-D equation.

10. In spite of the similarities in derivation between the non- \delta"

and \delta" form, the convergence properties are vastly di�erent.
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